Structure and origin of Holocene cold events

Heinz Wannera,b,*, Olga Solominac, Martin Grosjeana,b, Stefan P. Ritzb,d, Markéta Jetela

aInstitute of Geography, University of Bern, Bern, Switzerland
bOeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
cInstitute of Geography, Russian Academy of Sciences, Moscow, Russia
dClimate and Environmental Physics, University of Bern, Bern, Switzerland

\begin{abstract}
The present interglacial, the Holocene, spans the period of the last 11,700 years. It has sustained the growth and development of modern society. The millennial-scale decreasing solar insolation in the Northern Hemisphere summer lead to Northern Hemisphere cooling, a southern shift of the Intertropical Convergence Zone (ITCZ) and a weakening of the Northern Hemisphere summer monsoon systems. On the multidecadal to multicentury-scale, periods of more stable and warmer climate were interrupted by several cold relapses, at least in the Northern Hemisphere extra-tropical area. Based on carefully selected 10,000-year-long time series of temperature and humidity/precipitation, as well as reconstructions of glacier advances, the spatiotemporal pattern of six cold relapses during the last 10,000 years was analysed and presented in form of a Holocene Climate Atlas (HOCLAT; see http://www.oeschger.unibe.ch/research/projects/holocene_atlas/). A clear cyclicity was not found, and the spatiotemporal variability of temperature and humidity/precipitation during the six specific cold events (8200, 6300, 4700, 2700, 1550 and 550 years BP) was very high. Different dynamical processes such as meltwater flux into the North Atlantic, low solar activity, explosive volcanic eruptions, and fluctuations of the thermohaline circulation likely played a major role. In addition, internal dynamics in the North Atlantic and Pacific area (including their complex interaction) were likely involved.
\end{abstract}

\begin{articleinfo}
Article history:
Received 11 February 2011
Received in revised form 11 July 2011
Accepted 14 July 2011
Available online 10 August 2011

Keywords:
Holocene
Cold events
Bond cycles
Climate forcings
Climate atlas

1. Introduction

The present interglacial, the Holocene, has sustained the growth and development of modern human society. It started about 11.7 ka BP with a rapid transition from the cold period called Younger Dryas to a subsequent, generally warmer period that showed relatively small amplitudes in the reconstructed temperature, but larger ones in tropical precipitation records (Dansgaard et al., 1989; Alley et al., 1993; Mayewski et al., 2004; Wanner et al., 2008). On the millennial timescale, the climate of the Holocene was strongly influenced by opposite hemispheric trends of the solar insolation during the corresponding summer, namely the decreasing insolation in the Northern and the increasing insolation in the Southern Hemisphere. This redistribution of energy lead to a southern shift of the Intertropical Convergence Zone (ITCZ) and a weakening of the Northern Hemisphere summer monsoon systems (Braconnot et al., 2007). On the multidecadal to multcentennial timescale, Holocene climate was variable and fluctuated between warm and cold, and humid and arid states. Based predominantly on studies of glacier fluctuations (Denton and Karlén, 1973; Thompson et al., 2009) and ice rafted debris (IRD) in the North Atlantic ocean (Bond et al., 1997, 2001) the question was raised whether these swings are cyclic or not, and whether or not a theory exists for their formation (Crowley, 2002; Alley, 2005; Debret et al., 2007).

The studies by Bond et al. (1997, 2001) stimulated the discussion and gave rise to a large number of publications. First the term “Bond cycle” was used to denote an oscillation during the last Ice Age whose period is equal to the time between successive Heinrich Events (Bond and Lotti, 1995; IPCC, 2001). In their following studies, Gerard Bond and co-authors endeavoured to find similar quasi-periodic cycles during the Holocene. They postulated the existence of a cycle with an average length of about 1470 ± 500 years (Bond et al., 2001), and defined it as follows: “A prominent feature of the North Atlantic’s Holocene climate is a series of shifts in ocean surface hydrography during which drift ice and cooler surface waters in the Nordic and Labrador Seas were repeatedly advected southward and eastward, each time penetrating deep into the warmer strands of the subpolar circulation”. High peaks with fresh volcanic glass from Iceland or Jan Mayen and hematite stained
grains from eastern Greenland were interpreted to be the result of the southward and eastward advection of cold, ice-bearing surface waters from the Nordic and Labrador Seas during cold periods. In total nine Bond cycles were detected during the Holocene. Table 1 lists characterising keywords from the content of 30 papers published since 1995 that postulate a signal of one or more Bond events in their analysed time series. It demonstrates that the existence of Bond cycles is postulated for many areas of the globe, in particular Europe, Asia, and North America, yet one single theory explaining their formation has not been found (Debret et al., 2007; Wanner and Büntiker, 2008). The most reported processes are changes in solar activity, changes in the dynamics of deep-water flow

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Correlation with Bond cycles</th>
<th>Spectral peaks/cycle length</th>
<th>Possible mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>O’Brien et al. (1995)</td>
<td>Greenland (GISP 2)</td>
<td>0, 2, 4, 5, 8</td>
<td>Quasi 2600-year</td>
<td>Enhanced meridional atmospheric circulation</td>
</tr>
<tr>
<td>Bianchi and McCave (1995)</td>
<td>South Iceland basin</td>
<td>0–6</td>
<td>~ 1500-year periodicity</td>
<td>Changes in deep-water flow</td>
</tr>
<tr>
<td>Chapman and Shackleton (2000)</td>
<td>North Atlantic off Iceland</td>
<td>2, 5, 6, 7</td>
<td>Several spectral peaks</td>
<td>Cycles possibly driven by variation in solar activity</td>
</tr>
<tr>
<td>de Menocal et al. (2000a, b)</td>
<td>Off Cap Blanc, Mauretania</td>
<td>0–5, 7, 8</td>
<td>About every 1500 ± 500 yr</td>
<td>Increased southward advection of cooler waters or enhanced regional upwelling</td>
</tr>
<tr>
<td>Jennings et al. (2002)</td>
<td>East Greenland Shelf</td>
<td>1, 2, 3, 5</td>
<td>–</td>
<td>Increased flux of polar water and sea ice (changing NAO indices?)</td>
</tr>
<tr>
<td>Viau et al. (2002)</td>
<td>North America</td>
<td>Most cycles</td>
<td>1650 ± 500 yr</td>
<td>Abrupt transition between climatic regimes</td>
</tr>
<tr>
<td>Fleitmann et al. (2003)</td>
<td>Southern Oman</td>
<td>2–6</td>
<td>Several shorter cycles</td>
<td>Indian Ocean Monsoon precipitation responds to Bond events and to solar activity</td>
</tr>
<tr>
<td>Gupta et al. (2003)</td>
<td>Arabian Sea</td>
<td>1, 3, 4, 6, 7</td>
<td>–</td>
<td>Bond events coincide with weak Asian southwest monsoon (related to solar activity?)</td>
</tr>
<tr>
<td>Hong et al. (2003)</td>
<td>Tibetan Plateau</td>
<td>1, 3, 5, 7, 8</td>
<td>–</td>
<td>Thermohaline circulation decreases, SST decrease in North Atlantic and increase in Indian Ocean, monsoon weakening</td>
</tr>
<tr>
<td>Hu et al. (2003)</td>
<td>ArolikLake (SW Alaska)</td>
<td>3, 4, 6, 7, 8</td>
<td>Several spectral peaks (e.g. 590, 950 years)</td>
<td>Possible sun-ocean-climate link</td>
</tr>
<tr>
<td>Niggemann et al. (2003)</td>
<td>Sauerland (Germany)</td>
<td>Mainly cycles 1 and 2</td>
<td>1450 yr and minor peaks</td>
<td>Lower solar activity was probably accompanied by drier climate in northern Europe</td>
</tr>
<tr>
<td>Oppo et al. (2003)</td>
<td>Northeastern Atlantic Ocean</td>
<td>2, 4, 5, 6</td>
<td>Millennial oscillation of $\delta^{13}C$</td>
<td>Enhanced and reduced influence of NADW and Bódas</td>
</tr>
<tr>
<td>Risebrobakken et al. (2003)</td>
<td>Eastern Norwegian Sea</td>
<td>0, 2, 4, 6, 7</td>
<td>No clear evidence for a cyclic behaviour</td>
<td>Stronger westerlies during early to mid-Holocene gave rise to eastward migration of subsurface Arctic water</td>
</tr>
<tr>
<td>Yu et al. (2003)</td>
<td>Continental western Canada</td>
<td>0–5</td>
<td>Broad band (mean: 1785 years)</td>
<td>Wet periods correlate with warm periods in the North Atlantic (response to solar activity?)</td>
</tr>
<tr>
<td>Hall et al. (2004)</td>
<td>Subpolar North Atlantic</td>
<td>0–3, 5, 6</td>
<td>Broad band of quasiperiodic variability</td>
<td>Link between the ISOW and the surface component of the MOC</td>
</tr>
<tr>
<td>Baker et al. (2005)</td>
<td>Lake Titicaca (South America)</td>
<td>1, 2, 4, 5</td>
<td>Several spectral peaks (e.g. 434–454 years)</td>
<td>Wet conditions on the Altiplano appear to be associated with cold conditions (Bond events) in the North Atlantic, likely increase in solar activity</td>
</tr>
<tr>
<td>Russell and Johnson (2005)</td>
<td>Lake Edward (Uganda/Congo)</td>
<td>0, 1</td>
<td>Enhanced power at ~725 years</td>
<td>Droughts in equatorial Africa occur during both, cold and warm events in the North Atlantic area</td>
</tr>
<tr>
<td>Gupta et al. (2005)</td>
<td>North-western Arabian Sea</td>
<td>0–7</td>
<td>Several significant peaks (e.g. at 1530, 152, 114 years)</td>
<td>Monsoon minima coincide with sunspot numbers and increased advection of drift ice in the North Atlantic area</td>
</tr>
<tr>
<td>Turney et al. (2005)</td>
<td>Northern Ireland</td>
<td>0, 2, 4, 5</td>
<td>Broad band of variability, cyclicity of ~800 yr</td>
<td>Trees collapse due to dryness during Bond events, but no response to changes in solar activity</td>
</tr>
<tr>
<td>Wang et al. (2005)</td>
<td>DonggeCave (southern China)</td>
<td>0–5</td>
<td>Peaks at 159 and 206 years</td>
<td>Correlation with ice rafted debris in the North Atlantic (influence of solar activity?)</td>
</tr>
<tr>
<td>Willard et al. (2005)</td>
<td>Chesapeake Bay (eastern North America)</td>
<td>1, 5</td>
<td>148, 177, 282, 1429 yr</td>
<td>Cold events in the North Atlantic are also effective in North America</td>
</tr>
<tr>
<td>Lamy et al. (2006)</td>
<td>Black Sea/Gulf of Aqaba</td>
<td>Partly</td>
<td>Cycles of ~500 and ~800 yr</td>
<td>AO/NAO-like atmospheric variability, likely originating from solar output changes</td>
</tr>
<tr>
<td>Moros et al. (2006)</td>
<td>Area off north Iceland</td>
<td>Partly</td>
<td>75–80 years, 1300 yr</td>
<td>Late Holocene trend in drift ice: Increasing in the cold East Current, decreasing in warmer North Atlantic Drift</td>
</tr>
<tr>
<td>Parker et al. (2006)</td>
<td>Southeastern Arabia</td>
<td>3, 4, 5</td>
<td>–</td>
<td>Decreasing precipitation during North Atlantic Bond events</td>
</tr>
<tr>
<td>Viale et al. (2006)</td>
<td>North America</td>
<td>0–2, 5</td>
<td>Periodicity of 1150 yr</td>
<td>Possibly solar forcing?</td>
</tr>
<tr>
<td>Yu et al. (2006)</td>
<td>Hexi Corridor (NW China)</td>
<td>0, 2, 5, 7, 8</td>
<td>–</td>
<td>Southward expansion of northern polar vortex, NAO index negative, ENSO pattern</td>
</tr>
<tr>
<td>Allen et al. (2007)</td>
<td>Finnmark, Norway</td>
<td>0, 1, 5</td>
<td>Several spectral peaks</td>
<td>Complex interaction between oceanic and atmospheric circulation, solar and tidal variability</td>
</tr>
<tr>
<td>Bendle and Rosell-Melé (2007)</td>
<td>North Icelandic Shelf</td>
<td>0, 2</td>
<td>–</td>
<td>No close correlation with Bond cycles, rather with NAO dynamics</td>
</tr>
<tr>
<td>Li et al. (2007)</td>
<td>WhiteLake (NE USA)</td>
<td>1–4</td>
<td>–</td>
<td>Dry intervals correlate with cold periods in the North Atlantic Ocean</td>
</tr>
<tr>
<td>Mangini et al. (2007)</td>
<td>Spannagel Cave</td>
<td>0, 2–5</td>
<td>–</td>
<td>Meteorological conditions in the European Alps respond synchronously to hydro graphical changes in the North Atlantic</td>
</tr>
</tbody>
</table>
(including its interaction with sea ice) or teleconnections with the Indo-Pacific sea surface temperatures (SSTs), ENSO and the Asian monsoon systems (Emile-Geay et al., 2007). According to the review in Table 1, the cycles 2 (peak at ~3 ka BP) and 5 (showing a peak 5a at ~7.5 and a peak 5b at ~8.5 ka BP) are the most referred to in the 30 listed papers.

With the goal to get a more profound insight into the complex spatiotemporal structure of Holocene cold events we analyse a global set of Holocene time series from natural palaeoclimate archives which were selected based on specific quality criteria. We strictly leave out multimillenial-scale phenomena, focus on centennial-scale events and use an objective statistical procedure. In order to define the cold periods during the Holocene, suitable temperature proxies and glacier reconstructions are analysed. These data are supplemented by a specific set of humidity/precipitation proxy time series, which enable determination of dry periods. As an additional result of our study, a Holocene Climate Atlas (HOCLAT; Wanner and Ritz, 2011) with graphics of the 46 analysed temperature and humidity/precipitation proxy time series and 100 anomaly maps representing 100 year averages for the last 10,000 years was produced. This HOCLAT is available at: http://www.oeschger.unibe.ch/research/projects/holocene_atlas/

Table 2

List of the temperature proxies. Re: Temporal resolution.

<table>
<thead>
<tr>
<th>Type of temperature proxy</th>
<th>Record</th>
<th>Region</th>
<th>−Lat (deg)</th>
<th>−Long(deg)</th>
<th>Re</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pollen (air temp., °C)</td>
<td>Lake sediment core</td>
<td>Sweden</td>
<td>60.83</td>
<td>15.83</td>
<td>108</td>
<td>Antonnson et al. (2006)</td>
</tr>
<tr>
<td>2 Chironomidae (July air temp., °C)</td>
<td>Lake sediment core</td>
<td>Sweden</td>
<td>68.37</td>
<td>18.7</td>
<td>79</td>
<td>Larocque and Hall (2004)</td>
</tr>
<tr>
<td>3 Pollen (July air temp., °C)</td>
<td>Lake sediment core</td>
<td>Finland</td>
<td>68.68</td>
<td>22.08</td>
<td>68</td>
<td>Seppä and Birks (2001)</td>
</tr>
<tr>
<td>4 Pollen (July air temp., °C)</td>
<td>Lake sediment core</td>
<td>Sweden</td>
<td>69.2</td>
<td>21.47</td>
<td>60</td>
<td>Seppä and Birks (2002)</td>
</tr>
<tr>
<td>5 Foram. MAT (August SST, °C)</td>
<td>Sea sediment core</td>
<td>Norway</td>
<td>66.97</td>
<td>7.63</td>
<td>72</td>
<td>Risbey et al. (2003)</td>
</tr>
<tr>
<td>6 Pollen (Air temp., °C)</td>
<td>Lake sediment core</td>
<td>Finland</td>
<td>61.48</td>
<td>26.07</td>
<td>73</td>
<td>Heikinulu and Seppä (2003)</td>
</tr>
<tr>
<td>7 Pollen (Air temp., °C)</td>
<td>Lake sediment core</td>
<td>Sweden</td>
<td>58.55</td>
<td>13.67</td>
<td>98</td>
<td>Seppä et al. (2005)</td>
</tr>
<tr>
<td>8 UK37 (SST, °C)</td>
<td>Sea sediment core</td>
<td>Gulf of Guinea</td>
<td>-5.6</td>
<td>-36.6</td>
<td>138</td>
<td>Schoof et al. (2005)</td>
</tr>
<tr>
<td>9 UK37 (SST, °C)</td>
<td>Sea sediment core</td>
<td>South China Sea</td>
<td>20.12</td>
<td>117.38</td>
<td>143</td>
<td>Pelejero et al. (1999)</td>
</tr>
<tr>
<td>10 Mg/Ca (SST, °C)</td>
<td>Sea sediment core</td>
<td>Southeast Atlantic</td>
<td>-25.5</td>
<td>13</td>
<td>104</td>
<td>Farmer et al. (2005)</td>
</tr>
<tr>
<td>11 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>57</td>
<td>-63</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>12 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>55</td>
<td>-106</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>13 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>43</td>
<td>-95</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>14 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>64</td>
<td>-142</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>15 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>35</td>
<td>-81</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>16 Pollen (July air temp., °C)</td>
<td>Fossil pollen records</td>
<td>North America</td>
<td>37</td>
<td>-115</td>
<td>99</td>
<td>Vau et al. (2006)</td>
</tr>
<tr>
<td>17 UK37 (Air temp., °C)</td>
<td>Sea sediment core</td>
<td>North West Africa</td>
<td>20.75</td>
<td>-18.58</td>
<td>80</td>
<td>Zhao et al. (1995)</td>
</tr>
<tr>
<td>18 UK37 (Air temp., °C)</td>
<td>Ice core</td>
<td>Greenland</td>
<td>72</td>
<td>-36</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>19 d18O from ostracods (‰)</td>
<td>Lake sediment core</td>
<td>Germany</td>
<td>47.1</td>
<td>11</td>
<td>35</td>
<td>von Grafenstein et al. (1999)</td>
</tr>
<tr>
<td>20 UK37 (SST, °C)</td>
<td>Sea sediment core</td>
<td>Mediterranean</td>
<td>36.13</td>
<td>-2.62</td>
<td>120</td>
<td>Cacho et al. (2001)</td>
</tr>
<tr>
<td>22 Mg/Ca (SST, °C)</td>
<td>Sea sediment core</td>
<td>Equatorial Pacific</td>
<td>6.3</td>
<td>125.83</td>
<td>49</td>
<td>Stott et al. (2007)</td>
</tr>
<tr>
<td>23 Mg/Ca (SST, °C)</td>
<td>Sea sediment core</td>
<td>Equatorial Pacific</td>
<td>5</td>
<td>133.45</td>
<td>49</td>
<td>Stott et al. (2007)</td>
</tr>
<tr>
<td>24 Radiolarian (Summer SST, °C)</td>
<td>Sea sediment core</td>
<td>Nordic Sea</td>
<td>63.1</td>
<td>2.6</td>
<td>81</td>
<td>Dolven et al. (2002)</td>
</tr>
<tr>
<td>25 Mg/Ca (SST, °C)</td>
<td>Sea sediment core</td>
<td>Gulf of Guinea</td>
<td>2.5</td>
<td>9.38</td>
<td>40</td>
<td>Weldeab et al. (2007)</td>
</tr>
<tr>
<td>26 F13 (warm season SST, °C)</td>
<td>Sea sediment core</td>
<td>Subtropical Atlantic</td>
<td>20.75</td>
<td>-18.58</td>
<td>104</td>
<td>deMenocal et al. (2000a, b)</td>
</tr>
<tr>
<td>27 d18O (‰)</td>
<td>Speleothem</td>
<td>South Africa</td>
<td>-24.02</td>
<td>29.18</td>
<td>10</td>
<td>Holmgren et al. (2003)</td>
</tr>
<tr>
<td>28 dD (Temp., anomaly, °C)</td>
<td>Ice core</td>
<td>Vostok, Antarctica</td>
<td>-78</td>
<td>106</td>
<td>44</td>
<td>Petit et al. (1999)</td>
</tr>
<tr>
<td>29 dD (Temp., °C)</td>
<td>Ice core</td>
<td>EPICA Dome C, Antarctica</td>
<td>-75</td>
<td>123</td>
<td>18</td>
<td>Jouzel et al. (2007)</td>
</tr>
<tr>
<td>30 d18O (G. Bulloides,‰)</td>
<td>Sea sediment core</td>
<td>Northeast Pacific</td>
<td>34.27</td>
<td>-120.07</td>
<td>14</td>
<td>Frindell et al. (2003)</td>
</tr>
<tr>
<td>31 d18O (N. Pachyderma,‰)</td>
<td>Sea sediment core</td>
<td>Northeast Pacific</td>
<td>34.27</td>
<td>-120.07</td>
<td>14</td>
<td>Frindell et al. (2003)</td>
</tr>
<tr>
<td>32 d18O (‰)</td>
<td>Ice core</td>
<td>GRIP, Greenland</td>
<td>72</td>
<td>-37</td>
<td>4</td>
<td>Johnsen et al. (1997)</td>
</tr>
<tr>
<td>33 d18O (‰)</td>
<td>Speleothem</td>
<td>New Zealand</td>
<td>41.33</td>
<td>172.22</td>
<td>40</td>
<td>Williams et al. (2005)</td>
</tr>
<tr>
<td>34 dD (‰)</td>
<td>Ice core</td>
<td>Taylor Dome, Antarctica</td>
<td>-77.8</td>
<td>158.72</td>
<td>30</td>
<td>Steig et al. (1998)</td>
</tr>
<tr>
<td>35 Soil bacteria (annual mean air temp., °C)</td>
<td>Lake sediment core</td>
<td>Congo River Basin</td>
<td>-5.58</td>
<td>11.22</td>
<td>136</td>
<td>Weijers et al. (2007)</td>
</tr>
<tr>
<td>36 d18O (‰)</td>
<td>Ice core</td>
<td>NGIRP, Greenland</td>
<td>76</td>
<td>-42</td>
<td>20</td>
<td>Vinther et al. (2006)</td>
</tr>
<tr>
<td>37 d18O (‰)</td>
<td>Ice core</td>
<td>Huascaran (Peru)</td>
<td>-9</td>
<td>-77.5</td>
<td>99</td>
<td>Thompson et al. (1995)</td>
</tr>
<tr>
<td>38 d18O (‰)</td>
<td>Ice core</td>
<td>Kilimanjaro</td>
<td>-3</td>
<td>-37</td>
<td>50</td>
<td>Thompson et al. (2002)</td>
</tr>
<tr>
<td>39 d18O (‰)</td>
<td>Ice core</td>
<td>Agassiz ice cap</td>
<td>80</td>
<td>-73</td>
<td>25</td>
<td>Fisher and Koerner (1994)</td>
</tr>
<tr>
<td>40 Pollen (Coldest month temp., °C)</td>
<td>Lake sediment core</td>
<td>Lake Bajkal</td>
<td>52.78</td>
<td>108.12</td>
<td>130</td>
<td>Tarasov et al. (2009)</td>
</tr>
<tr>
<td>41 Pollen (Warmest month temp., °C)</td>
<td>Lake sediment core</td>
<td>Lake Bajkal</td>
<td>52.78</td>
<td>108.12</td>
<td>130</td>
<td>Tarasov et al. (2009)</td>
</tr>
<tr>
<td>42 (Summit SST, °C)</td>
<td>Sea sediment core</td>
<td>North Atlantic</td>
<td>60</td>
<td>-37</td>
<td>12</td>
<td>Mayewski et al. (2004)</td>
</tr>
<tr>
<td>43 TEX86 (SST, °C)</td>
<td>Sea sediment core</td>
<td>Antarctica</td>
<td>-64.86</td>
<td>-64.2</td>
<td>96</td>
<td>Shevenell et al. (2007)</td>
</tr>
<tr>
<td>46 UK37 (SST, °C)</td>
<td>Sea sediment core</td>
<td>North Pacific</td>
<td>36.03</td>
<td>141.78</td>
<td>66</td>
<td>Isomoto et al. (2009)</td>
</tr>
</tbody>
</table>
the assessment of the annual mean value is restricted. The spatial
distribution of the temperature and humidity/precipitation
anomalies at the sites compiled in this study is represented in Fig. 4.
The coordinates of the data sets representing a compilation of
several records were arbitrarily chosen within the region of the
study. Unfortunately, the lack of data in the Southern Hemisphere
prohibited a meaningful regional subdivision of the data.
Since the focus is on centennial-scale changes, high-frequency
variability was eliminated by applying a spline-fit according to
Enting (1987) with a cut-off frequency of 1/500 yr⁻¹. Low-
frequency variability was removed by detrending every data set
using a spline-fit with 1/3000 yr⁻¹ cut-off frequency. Fig. 1 shows
eamples of two analysed time series. We statistically define a cold
or dry period as the time span where temperature or humidity/
precipitation proxy values fall below one half of a standard devia-
tion of the Holocene mean value (thus, approximately 30% of the
data is within a cold or dry period; see the blue or brown segments
in Fig. 1a and b). Anagonously, warm or humid periods are defined
(red or green segments in Fig. 1a and b). From the processed time
series related to Fig. 1, the detected cold and dry events are first
presented as a function of latitude (Fig. 2a and c). Also, the sum of
the cold and dry events, respectively were calculated as a function
of time (Fig. 3a and c). For this calculation the data was weighted
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
detected at several sites, the data are provided as a range (black lines in
Fig. 2b), the central date was used inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
provided as a range (black lines in Fig. 2b), the central date was used
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

The coordinates of the data sets representing a compilation of
several records were arbitrarily chosen within the region of the
study. Unfortunately, the lack of data in the Southern Hemisphere
prohibited a meaningful regional subdivision of the data.
Since the focus is on centennial-scale changes, high-frequency
variability was eliminated by applying a spline-fit according to
Enting (1987) with a cut-off frequency of 1/500 yr⁻¹. Low-
frequency variability was removed by detrending every data set
using a spline-fit with 1/3000 yr⁻¹ cut-off frequency. Fig. 1 shows
eamples of two analysed time series. We statistically define a cold
or dry period as the time span where temperature or humidity/
precipitation proxy values fall below one half of a standard devia-
tion of the Holocene mean value (thus, approximately 30% of the
data is within a cold or dry period; see the blue or brown segments
in Fig. 1a and b). Anagonously, warm or humid periods are defined
(red or green segments in Fig. 1a and b). From the processed time
series related to Fig. 1, the detected cold and dry events are first
presented as a function of latitude (Fig. 2a and c). Also, the sum of
the cold and dry events, respectively were calculated as a function
of time (Fig. 3a and c). For this calculation the data was weighted
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
provided as a range (black lines in Fig. 2b), the central date was used
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
provided as a range (black lines in Fig. 2b), the central date was used
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
provided as a range (black lines in Fig. 2b), the central date was used
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.

Glaciers are suitable qualitative indicators of regional and global
cooling (Oerlemans, 2005). Therefore, a large set of available data
detecting glacier advances was collected from the literature in
Table 4 and represented in Fig. 2b. Where the glacier advance was
provided as a range (black lines in Fig. 2b), the central date was used
inversely by the number of available data sets at the given time. The
resulting curve was smoothed by a 50 yr moving average.
included two types of data on glacier variations: morphological discontinuous records based on the dated moraines, and continuous records from lake sediments of proglacial lakes. The continuous data provide the information on both advances and retreats, and statistical methods (e.g., detrending, correlation and wavelet analysis) are applied to treat these time series. Discontinuous data include dates of stadial moraines or sediments and landforms related to them. Discontinuous data provide less detailed information, however they can even be more reliable because they are based upon clear physical evidence. The history of glacier fluctuations is best understood using a combination of the two approaches (Osborn et al., 2007). It is impossible to estimate in a strict sense the precision of the dating of a glacier advance and retreat. It depends on the accuracy of the applied method, and on the local circumstances. The accuracy increases from the early to the late Holocene. An additional problem arises because it is difficult to distinguish between a readvance and a steady state behaviour of a glacier. In this paper we do not consider the scale of the registered glacier advances. In many cases it is unknown, uncertain, and not indicated in the original publications.

3. Results

In the form of horizontal bars, the Fig. 2a and c show centennial-scale cold and dry anomalies as they were detected from the time series listed in Tables 2 and 3. The green dots and the black

Fig. 1. Two time series representing a temperature reconstruction based on δ¹⁸O data from the GISP 2 ice core (no. 18 in Table 2) and a reconstruction of annual precipitation based on a lake sediment core from Finland (no. 15 in Table 3). The upper curves show the original data, together with the splines for a 500-yr and a 3000-yr cut-off period. The lower curves show the smoothed time series after removing the millennial trend. The upper/lower blue curves represent an interval of ±0.5 standard deviation. A positive or negative (red or blue) anomaly of temperature or humidity/precipitation (green or brown) at a certain time was defined if the values lay above/below the upper/lower blue line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. (a) Blue horizontal bars representing cold periods based on the time series in Table 2. (b) Glacier advances based on the literature listed in Table 4. Advances of mountain glaciers are marked by green dots. Ranges of longer advance periods are indicated by black horizontal bars, and arrows mark possible advance periods. (c) Brown horizontal bars representing dry periods based on the time series in Table 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
horizontal bars in Fig. 2b represent the glacier advances determined from the data in the references listed in Table 4. The temporal resolution of the glacier reconstructions is low what hinders a precise global or inter-hemispheric interpretation of glacier advances and retreats (Winkler and Matthews, 2010). Already the study of the single curves in Fig. 1 and the Holocene Climate Atlas (HOCLAT) show that the spatiotemporal picture of the cold and dry events is very complex, yet concentrations of cold events are roughly discernible in Fig. 2a at about 8.2, 6.4 and 0.7 ka BP. An enhanced number of dry events occurred between 5.7 and 7.2 ka BP (Fig. 2c). An increasing number of Neoglacial glacier advances occurred after 4.5 ka BP.

A general overview of the temporal structure of cold and dry periods, as well as glacier advances, is represented by the curves in Fig. 3. As mentioned above, the sum of the cold and wet periods was weighted inversely by the number of available data sets at the given
time and smoothed by a 50-yr moving average, and the sum of glacier advances was calculated by summing up all glacier advances (green circles in Fig. 2b) within a 500-yr window centred around a glacier advance was calculated by summing up all glacier advances time and smoothed by a 50-yr moving average, and the sum of Table 4 during the last 10 ka BP. They are represented by blue bars in Fig. 3, together, roughly six remarkable cold events can be distinguished phenomena, cold periods, glacier advances and Bond cycles obvious in all represented time series. If we consider all three is added in all three Figures. Multicentury-scale variability is red curve of the ice rafted debris (IRD) record by Bond et al. (2001) the given time and weighted in a similar way. For comparison, the events 5b, 2 and 1 (Fig. 3a). Interestingly, a high number of time Little Ice Age from 1250 to 1850 AD, correlate best with the Bond events from 8.6 to 8.0 and 3.3–2.5 ka BP, as well as for the Little Ice Age from 1250 to 1850 AD, correlate best with the Bond events 5b, 2 and 1 (Fig. 3a). Interestingly, a high number of time series with dry anomalies occurred during the two earliest cold events as well as during the so-called Dark Age Cooling (Ljungqvist, 2010) from 300 to 600 AD (nr. 1, 2 and 5 in Table 5). Conversely, an average to low number of dry anomalies was registered during the other three periods, including the Little Ice Age (Grove, 2004) from 1250 to 1850 AD (no. 3, 4 and 6 in Table 5). The patterns of the cold events 3 and 4 (Table 5) show the highest diversity. With 800 years, event 4 spans the longest time period.

As mentioned above, the maps with all 100-year averages of temperature and humidity/precipitation anomalies for the last 10 ka are represented in the Holocene Climate Atlas (HOCLAT). Fig. 4 shows six selected global maps with the 200-yr averages represented for the climax of the six cold events listed in Table 5. In contrast to the Figures in the HOCLAT a 200-yr average was chosen to get a more stable picture of the corresponding cold event. For both temperature and humidity/precipitation, the data are divided into the three categories high, average and low. As expected the patterns show a very complex picture. Even though a certain number of positive temperature anomalies (red dots) becomes apparent, all six patterns show predominantly negative ones. Only event 4 around 3.3–2.5 ka BP (Fig. 4d) indicates that several positive temperature anomalies occurred, mainly in the Northern Hemisphere. A remarkable opposite tendency in all patterns appears in the area of Scandinavia and its surroundings, which
show a high number of positive temperature anomalies during all cold events except event 5, the Dark Age or Migration Period Cooling which lasted from 300 to 600 AD. The tendency for positive temperature anomalies is mainly visible in the time series 1, 4 and 45 in Table 2 and is also confirmed by regional studies (Seppä et al., 2007). As already mentioned, dryness prevailed during the cold events 1, 2 and 5 (Table 5), mainly in the Northern Hemisphere. Due to the sparse information we have in the Antarctic area a clear statement for this region is not possible.

4. Discussion

It has to be asked how much the patterns in Figs. 2–4 were determined by important climate forcing factors or by the effects of internal variability. For this reason the time series of the four most important climate forcing factors are represented in Fig. 5. In addition, the six distinct cold periods indicated in Fig. 4 and Table 5 are marked by blue bars. Even though the focus of this contribution lies on the multicentury timescale, it has to be stressed that at the millennial timescale, the Holocene climate was dominated by the influence of summer season orbital forcing, represented in Fig. 5a.
The summer insolation curves of both hemispheres for the last 10 ka show opposite behaviour, where the Northern Hemisphere insolation decreased by almost 40 W m\(^{-2}\) (and vice versa). Therefore, a strong shift in the hemispheric temperature distribution, as well as in the intensity of the monsoon systems, was observed (Mayewski et al., 2004; Wanner et al., 2008). Based on these facts the Holocene can be divided into three main periods. The first period between approximately 11.7 and 7 ka BP is characterised by a high summer insolation in the Northern Hemisphere, still a cool or temperate climate mainly in the surroundings of the melting ice sheets in North America and Eurasia (Renssen et al., 2009), and a high monsoon activity in Africa (de Menocal et al., 2000b) and Asia (Zhang et al., 2011). The second period between about 7 and 4.2 ka BP marks the so-called Holocene Climatic Optimum (also called ‘Holocene Climate Optimum’, ‘Altithermal’ or ‘Hypsithermal’ from a Northern Hemisphere viewpoint). Compared to the preindustrial period prior to year 1900 AD this period was clearly characterised by higher summer temperatures in the Northern Hemisphere mid- and high-latitude areas (Klimenko et al., 1996; Alverson et al., 2003), and most of the global monsoon systems were still active, but weakening (Wang et al., 2005; Huang et al., 2008; Wanner et al., 2008; Zhang et al., 2011). The third period, called ‘Neoglacial’ or ‘Neoglaciation’, was dominated by decreasing summer temperatures in the Northern Hemisphere due to decreasing insolation during the boreal summer (Porter and Denton, 1967; Denton and Karln, 1973). Even though summer insolation in the Northern Hemisphere decreased after the mid-Holocene, there is evidence from some areas that not only the Holocene Thermal Maximum (Masson et al., 2000; Kaufman et al., 2006) but also the Neoglaciation period started earlier (Kelly and Lowell, 2009). The Neoglaciation was terminated by
global warming, which at the beginning of the 20th century was most likely induced by the increasing anthropogenic greenhouse effect (IPCC, 2007; Fig. 5d).

Because our study is centred on multidisciplinary- to multicentury-scale temperature fluctuations, clusters of volcanic eruptions and solar irradiance, above all during periods they coincide, play an important role. Unfortunately a sound volcanic data set representing spaniotechnology changes in aerosol optical depth covering the whole Holocene period is not available (Gao et al., 2008). The blue and red vertical lines in Fig. 5b suggest that the highest number of strong tropical volcanic eruptions likely occurred during the last cold event no. 6, the Little Ice Age (Wanner et al., 2008). A few long-term reconstructions of solar activity exist (Krivova and Solanki, 2008; Steinhilber et al., 2009). Although the reconstructions indicate that the amplitude of solar activity fluctuations was rather small and some age models can still be questioned, the curve in Fig. 5c shows that phases of low (high) solar activity often coincided with periods of lower (higher) temperatures (Gray et al., 2010). This does not necessarily mean that solar activity was the main trigger behind the formation of all Holocene cold events because other processes, such as explosive tropical volcanic eruptions, fluctuations of the ocean thermohaline circulation or internal feedbacks, might also have played an important role (Wanner et al., 2008). Internal variability, particularly relevant with respect to regional or local climate signals (Bengtsson et al., 2006), and therefore, for many of the existing reconstructions from proxy archives.

In order to get further insight into the dynamics of the formation of Holocene cold events, the above mentioned six significant cold relapses (see the vertical bars in Figs. 3 and 5 as well as Table 5) were analysed. The global maps showing temperature (circles) and humidity/precipitation (triangles) anomalies for these selected periods are displayed in Fig. 4. Positive (negative) temperature anomalies are shown in red (blue), positive (negative) humidity anomalies in green (brown). Grey dots or triangles represent average conditions (see the method Section 2 and Tables 2 and 3). It is important to note that all time series were detrended and show relative anomalies in the variability band from centuries up to one millennium at maximum. They do not, therefore, represent multmillennial-scale phenomena. Note that the curves of cold events are significantly correlated with those of the warm events ($r = -0.55$). The same is valid for the dry and humid events ($r = -0.45$). The correlations between cold (warm) and dry (humid) events amount to $r = 0.44$ (0.52).

Fig. 4a shows the pattern for the well known 8.2 ka BP cold event, which coincides roughly with Bond event 5b (see Fig. 3 or Bond et al., 1997, 2001). This event followed a longer time period from 9.5 to about 8.6 ka BP with mostly positive temperature. It has been the focus of a large number of studies (e.g., Alley et al., 1997; Alley and Ágústsdóttir, 2005; Rohling and Pälike, 2005; Cheng et al., 2009). The majority of temperature proxies indicate negative temperature anomalies. Dryness predominated in Latin America and parts of the Indian and Asian monsoon areas. Several warm anomalies are indicated for North America, parts of Scandinavia, Japan and the tropical west Pacific, and two of the three stations in Antarctica (Fig. 4a). This rather complex spatiotemporal pattern could also be due to the fact that different regions reacted with a different time lag to the cooling influence of the still existent, but strongly melting Laurentide ice sheet (Renssen et al., 2009). Rohling and Pälike (2005) show that different cooling events occurred in different regions over a period of 400–600 years. Based on alkenone-derived sea surface temperatures Kim et al. (2004) have demonstrated that a negative (positive) sea surface temperature trend is indicated during the mid- to late Holocene for the northeastern Atlantic (northeastern Pacific). While the solar activity curve shows only a very weak minimum around 8.4 ka BP (Fig. 5c), the 8.2 ka BP cooling event was most likely triggered by a downturn of the thermohaline circulation in the North Atlantic due to the meltwater outflow from the continental ice sheets, mainly from the Laurentide area (Barber et al., 1999; Alley and Ágústsdóttir, 2005; Rohling and Pälike, 2005; Renssen et al., 2007; Carlson et al., 2008). Based on stalagmite records, Cheng et al. (2009) show that an antiphase pattern existed with a weak summer monsoon in Asia and an intensified summer monsoon in South America, a pattern that also appears in simulations with meltwater pulses in the North Atlantic (LeGrande and Schmidt, 2008).

The second cooling event, represented in Fig. 4b, occurred between 6.5 and 5.9 ka BP (i.e., after the beginning of the Holocene Thermal Maximum). Similar to the 8.2 ka BP event, a predominance of negative temperature anomalies existed in the Southern Hemisphere, a majority of positive temperature anomalies occurs around Scandinavia, but, contrary to Fig. 4a, the inner area of North America was cool. Kaufman et al. (2004) show that the warming during the Holocene Thermal Maximum was time-transgressive across the western Arctic, and northeastern Canada remained cool for another few millennia due to the residual Laurentide Ice Sheet. According to Fig. 5c solar activity was clearly reduced. The maps in the HOCLAT show that a remarkable dryness existed in the Asian monsoon area between about 6900 and 6300 years BP. It is argued that the East Asian monsoon was extremely weak during this cold event, due to a cold North Atlantic area and a southward shift of the ITCZ (Xiao et al., 2009). Zhang et al. (2011) demonstrate that the monsoon activity was not weak, but clearly declining during this period. Another interesting hypothesis is that ENSO acts as a mediator of low solar influence and drives ocean circulation in the North Atlantic to produce Bond-like events (Emile-Geay et al., 2007). In contrast, some authors even report a moderate to warm climate in Europe and even for the whole Northern Hemisphere mid- and high-latitudes (Alverson et al., 2003).

The event which occurred between 4.8 and 4.5 ka BP (Fig. 4c) coincides roughly with Bond event 3 (Fig. 3) and is indicated by negative temperature anomalies in Greenland, North America, Africa and Antarctica. Again, most time series in northern Europe showed average conditions or even positive temperature anomalies. Positive humidity anomalies occurred in the Northern Hemisphere, except eastern Asia. The maps in the HOCLAT show strong changes during the whole 4th millennium BP with even more negative temperature anomalies between 4.8 and 4.6 ka BP. Around 4.7 ka BP solar activity was average (Fig. 5c). The peak in the frequency curve of the glacier advances was reached later (around 4.3 ka BP), itself marking the transition to the Neoglacial period (Fig. 3b). Interestingly, several authors relate this cooling period to strong dryness in North America (Booth et al., 2005) and the collapse of the old Alkkadian culture in Mesopotamia (Weiss et al., 1993), as well as the collapse of old Chinese cultures (An et al., 2005).

The fourth cool event depicted in Fig. 4d occurred between 3.3 and 2.5 ka BP (Table 5) and corresponds with Bond event 2 (Fig. 3). Not least because of its long duration the pattern was variable and complex. Similar to the 4.7 ka BP event, Fig. 4d shows that almost no warm anomaly occurred in the Southern Hemisphere (van Geel et al., 2000). This cooling event also coincided with a remarkable low solar activity forcing (Fig. 5c). In addition, some authors postulate that this solar signal was amplified by the thermohaline circulation and was therefore also prominently detected in proxy time series from Eurasia (Sperranza et al., 2002; Plummet et al., 2004; van Geel et al., 2004; Swindles et al., 2007). Fig. 4d also indicates positive temperature anomalies in Scandinavia and northwestern America and dryness in the northern Asian monsoon area. Based on the HOCLAT maps the European time series showed a number of negative temperature anomalies prior to this event. After 2.4 ka BP a large number of positive anomalies occurred at the global scale.
The fifth cold event, which occurred between 1.75 and 1.35 ka BP (300–600 AD; Fig. 4e), is also known as Dark Age or Migration Period Cooling (Ljungqvist, 2010). This period marked the transition from Late Antiquity to the Early Middle Ages, and a strong human migration occurred roughly between the years 300–700 AD in Europe. The curve with the frequency of cold events (Fig. 3a) shows a clear peak around 400 AD, and the highest number of negative temperature anomalies of all six cold events was observed during this period in the European area. Rather warm conditions existed in Africa. The frequencies of the glacier advances (Fig. 3b) increased remarkably, and dryness prevailed in the Arabian and parts of the Asian area. Interestingly, the solar forcing curve on Fig. 5c shows a negative peak shortly after this event, and a larger volcanic activity also started after 600 AD (Zielinski, 2000). Further studies have to examine whether or not this was due to inaccurate age models.

Based on our statistical analysis the last cold period, the Little Ice Age (LIA; Fig. 4f), occurred between 0.7 and 0.15 ka BP (1200–1800 AD). In many studies the LIA encompasses the time period between the 14th and the 19th century (Matthews and Briffa, 2005). It represents the archetype of a Holocene cold relapse (Grove, 2004), corresponds well with Bond event 0 and correlates with a series of Grand Solar Minima (Fig. 5c) as well as a high number of strong tropical volcanic eruptions (Fig. 5b) (Sonne authors; Mann et al., 2009; Tröet et al., 2005) that could have triggered the transition from the warmer Medieval Climate Anomaly (Hughes and Diaz, 1994; Bradley et al., 2003) to the LIA was due to a shift to a mostly negative mode of the North Atlantic Oscillation. The pattern in Fig. 4f, again representing a 200-year average, covers a large part of one of the coldest subperiods during the LIA, encompassing the Wolf and the Spörer Minimum. The map shows a predominant number of negative or average temperature anomalies. At least in many areas of the Northern Hemisphere outer tropics, the Little Ice Age was likely the coldest middecadal to multicentury long Holocene period since the 8.2 ka BP event (Wanner et al., 2008; Kaufman et al., 2009). Several authors argue that a lower solar activity additionally triggered the slowdown of the thermohaline circulation in the North Atlantic (Renssen et al., 2007). Reconstructions of solar activity minima and large volcanic eruptions (Fig. 5) show a remarkable synchronization of those events, and simulations based on related data show that the Little Ice Age was characterised by an alternation of warmer and cooler periods (IPCC, 2007). This behaviour is also visible in glacier reconstructions from different continents (Clague et al., 2009). Mainly in Europe, the LIA is associated with societal reactions, e.g. the disappearance of the Norse colonies in Greenland or the abandonment of permanent settlements in the Alps (Pfister, 1995; Fagan, 2000; Grove, 2004).

5. Conclusions

The Holocene can roughly be divided into three periods (early deglaciation phase, Holocene Thermal Optimum, Neoglacial period). Based on a statistical analysis of proxy time series we demonstrate that, at the middecadal to multicentury timescale, several cold relapses interrupted periods of relatively stable and warmer climate. Our results show that their appearance was not strictly regular or cyclic, and one single process cannot explain their complex spatiotemporal pattern. Most likely decreasing solar insolation, combined with a possible slowdown of the thermohaline circulation and, in some cases, also combined with a series of tropical volcanic eruptions, may have played an essential role. In addition, feedback effects may have been important. This is particularly important if regional or even local phenomena are considered (Bengtsson et al., 2006), which is the case for many proxy time series. Based on the fact that the summer insolation decreased strongly during the Northern Hemisphere (boreal)

summer (Wanner et al., 2008) and that temperature was low in the late Holocene at least in the Arctic area (Kauffman et al., 2009) the question must be raised whether we would still remain in the Little Ice Age or at least early 19th century climate regime today, if anthropogenic climate change had not masked the natural driving forces of the climate system. The rapidly growing number of studies will help to answer this question.

Acknowledgements

We thank the two anonymous reviewers who helped to improve this paper. We also thank Alex Hermann for graphical support, Sarina Scheidegger and Daniel Gähwiler for data collection, Eva Baumgartner and Laura Hobi for preparation of the references, and Krystyna Saunders and Louise Newman for the proofreading of the text.

References

